Interaction with factor inhibiting HIF-1 defines an additional mode of cross-coupling between the Notch and hypoxia signaling pathways.

نویسندگان

  • Xiaofeng Zheng
  • Sarah Linke
  • José M Dias
  • Xiaowei Zheng
  • Katarina Gradin
  • Tristan P Wallis
  • Brett R Hamilton
  • Maria Gustafsson
  • Jorge L Ruas
  • Sarah Wilkins
  • Rebecca L Bilton
  • Kerstin Brismar
  • Murray L Whitelaw
  • Teresa Pereira
  • Jeffrey J Gorman
  • Johan Ericson
  • Daniel J Peet
  • Urban Lendahl
  • Lorenz Poellinger
چکیده

Cells adapt to hypoxia by a cellular response, where hypoxia-inducible factor 1alpha (HIF-1alpha) becomes stabilized and directly activates transcription of downstream genes. In addition to this "canonical" response, certain aspects of the pathway require integration with Notch signaling, i.e., HIF-1alpha can interact with the Notch intracellular domain (ICD) to augment the Notch downstream response. In this work, we demonstrate an additional level of complexity in this cross-talk: factor-inhibiting HIF-1 (FIH-1) regulates not only HIF activity, but also the Notch signaling output and, in addition, plays a role in how Notch signaling modulates the hypoxic response. We show that FIH-1 hydroxylates Notch ICD at two residues (N(1945) and N(2012)) that are critical for the function of Notch ICD as a transactivator within cells and during neurogenesis and myogenesis in vivo. FIH-1 negatively regulates Notch activity and accelerates myogenic differentiation. In its modulation of the hypoxic response, Notch ICD enhances recruitment of HIF-1alpha to its target promoters and derepresses HIF-1alpha function. Addition of FIH-1, which has a higher affinity for Notch ICD than for HIF-1alpha, abrogates the derepression, suggesting that Notch ICD sequesters FIH-1 away from HIF-1alpha. In conclusion, the data reveal posttranslational modification of the activated form of the Notch receptor and an intricate mode of cross-coupling between the Notch and hypoxia signaling pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aspartyl-(asparaginyl) β-Hydroxylase, Hypoxia-Inducible Factor-1α and Notch Cross-Talk in Regulating Neuronal Motility

Aspartyl-(Asparginyl)-β-Hydroxylase (AAH) promotes cell motility by hydroxylating Notch. Insulin and insulin-like growth factor, type 1 (IGF-I) stimulate AAH through Erk MAPK and phosphoinositol-3-kinase-Akt (PI3K-Akt). However, hypoxia/oxidative stress may also regulate AAH. Hypoxia inducible factor-1 alpha (HIF-1α) regulates cell migration, signals through Notch, and is regulated by hypoxia/o...

متن کامل

فاکتور القا شونده به‌وسیله هیپوکسی: نقش آن در آنژیوژنز و سرطان

Angiogenesis, as the process of new vessel formation from pre-existing vessels is dependent on a delicate equilibrium between endogenous angiogenic and antiangiogenic factors. However, under pathological conditions, this tight regulation becomes lost which can result in the formation of the different diseases such as cancer. Angiogenesis is a complex process that includes many gene products tha...

متن کامل

Mesenchymal Stem Cell Migration and Proliferation Are Mediated by Hypoxia-Inducible Factor-1α Upstream of Notch and SUMO Pathways

Mesenchymal stem cells (MSCs) are effective in treating several pathologies. We and others have demonstrated that hypoxia or hypoxia-inducible factor 1 alpha (HIF-1α) stabilization improves several MSC functions, including cell adhesion, migration, and proliferation, thereby increasing their therapeutic potential. To further explore the mechanisms induced by HIF-1α in MSCs, we studied its relat...

متن کامل

9-cis-Retinoic Acid and 1,25-dihydroxy Vitamin D3 Improve the Differentiation of Neural Stem Cells into Oligodendrocytes through the Inhibition of the Notch and Wnt Signaling Pathways

Background: Differentiating oligodendrocyte precursor cells (OPCs) into oligodendrocytes could be improved by inhibiting signaling pathways such as Wnt and Notch. 9-cis-retinoic acid (9-cis-RA) and 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) can ameliorate oligodendrogenesis. We investigated whether they could increase oligodendrogenesis by inhibiting the Wnt and Notch signaling pathways.Methods: Co...

متن کامل

New Classes of Mind Bomb-Interacting Proteins Identified from Yeast Two-Hybrid Screens

Notch signaling pathway defines an evolutionarily conserved mechanism in cell-fate determination in a broad spectrum of developmental processes through local cell interactions. mind bomb (mib) encodes an E3 ubiquitin ligase that is involved in Notch activation through Delta ubiquitylation and internalization. To further dissect the function of Mib, two yeast two-hybrid screens for zebrafish Mib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 9  شماره 

صفحات  -

تاریخ انتشار 2008